Three months of DHA + EPA supplementation resulted in significant reductions in markers of inflammation such as cytokines, adhesion molecules and acute phase proteins, and an increase in specialized pro-resolving mediators (SPMs) in 59 obese women, according to results published in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids.
“Of great interest is the observation that DHA-derived resolvins and protectins were increased in plasma of women with obesity given [omega-3] supplements. These DHA-derived mediators have a key role in resolution of inflammation suggesting that in obesity [omega-3] may not only reduce inflammation but may actively resolve it,” wrote researchers from Poland and the UK.
“Teaching us the value of being able to modulate the inflammatory response”
Commenting independently on the study’s findings, Dr Gerard Bannenberg, director of compliance & scientific outreach for the Global Organization for EPA and DHA Omega-3s (GOED), told us: “This study by Polus et al. provides further supports to the description of obesity as a disorder that is characterized by inflammation that is measurable at systemic level. Interestingly, the inflamed state was shown to be decreased when improving the participant’s omega-3 status by supplemental EPA and DHA intake.
“Measurable increases in pro-resolving lipid mediators derived from DHA, following three months of increased omega-3 intake, indicate that a pro-resolving response is activated that the authors believe may be helping to limit and turn off the chronic low-grade inflammation in the obese female participants.
“Through a comprehensive documentation of several aspects of inflammation in obesity, this study shows that several molecular events previously elucidated in animal studies are also operative in humans, and can likewise be modulated by improving one’s omega-3 status.
“Future human research employing well-controlled dietary intervention studies that take into account the tissue status of omega-3 polyunsaturated fatty acids in the body will further teach us the value of being able to modulate the inflammatory response in a range of diseases that are characterized by inflammation.”
Study details
SPMs are biological derivatives of EPA and DHA that have potent anti-inflammatory and cell protection properties.
Some industry experts expect these so-called lipid mediators to become a big product category in their own right. Metagenics already has a supplement product formulated with these mediators available in the practitioner channel: OmegaGenics SPM Active.
The researchers, led by Anna Polus from Jagiellonian University, Krakow, randomly assigned 59 moderately obese women with an average age of 46.6 to receive either omega-3 supplements containing 1,290 mg per day of DHA and 270-450 mg per day of EPA (EPAX 1050 TG; EPAX AS) or placebo for three months.
Results showed that the calorie-controlled diet produced significant reductions in body weight, fat mass, and BMI in both groups, but only the omega-3 supplemented group displayed significant increases in EPA and DHA.
In addition, only the omega-3 group had significantly decreased concentrations of several inflammatory markers, including E-selectin (SELE), monocyte chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and C-reactive protein (CRP). The omega-3 group also experienced significant reduction to fasting triglycerides and insulin levels.
The researchers also found that there was an increase in SPMs correlated with up-regulated gene expression of enzyme ALOX5, which plays a role in SPM production.
Effects on specific genetic pathways linked to catabolism of fatty acids in mitochondria, the synthesis of phospholipids, mitochondrial electron transport chain, and antioxidant enzymes were also reported.
“We conclude that [omega-3 polyunsaturated fatty acids] can combat low grade inflammation in obesity through an increase of DHA-derived pro-resolving mediators and a decrease in a range of pro-inflammatory proteins.”
Source: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Volume 1861, Issue 11, Pages 1746–1755, doi: 10.1016/j.bbalip.2016.08.005
“Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production”
Authors: A. Polus et al